Characters of Finite Abelian Groups (short Version)

نویسنده

  • KEITH CONRAD
چکیده

Example 1.2. The trivial character of G is the homomorphism 1G defined by 1G(g) = 1 for all g ∈ G. Example 1.3. Let G be cyclic of order 4 with generator γ. Since γ4 = 1, a character χ of G has χ(γ)4 = 1, so χ takes only four possible values at γ, namely 1, −1, i, or −i. Once χ(γ) is known, the value of χ elsewhere is determined by multiplicativity: χ(γj) = χ(γ)j . So we get four characters, whose values can be placed in a table. See Table 1.

منابع مشابه

Revised version for publication in Israel J. Math. EXTERIOR ALGEBRAS AND TWO CONJECTURES ON FINITE ABELIAN GROUPS

Let G be a finite abelian group with |G| > 1. Let a1, . . . , ak be k distinct elements of G and let b1, . . . , bk be (not necessarily distinct) elements of G, where k is a positive integer smaller than the smallest prime divisor of |G|. We show that there is a permutation π on {1, . . . , k} such that a1bπ(1), . . . , akbπ(k) are distinct, provided that any other prime divisor of |G| (if ther...

متن کامل

Representation theory of finite abelian groups

Paul Garrett [email protected] http://www.math.umn.edu/ g̃arrett/ [This document is http://www.math.umn.edu/ ̃garrett/m/repns/notes 2014-15/01 finite abelian.pdf] 1. Simultaneous eigenvectors for finite abelian groups 2. Cancellation lemma, orthogonality of distinct characters 3. Representations of finite abelian groups 4. Fourier expansions on finite abelian groups 5. Appendix: spectral theor...

متن کامل

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS

A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012