Characters of Finite Abelian Groups (short Version)

نویسنده

  • KEITH CONRAD
چکیده

Example 1.2. The trivial character of G is the homomorphism 1G defined by 1G(g) = 1 for all g ∈ G. Example 1.3. Let G be cyclic of order 4 with generator γ. Since γ4 = 1, a character χ of G has χ(γ)4 = 1, so χ takes only four possible values at γ, namely 1, −1, i, or −i. Once χ(γ) is known, the value of χ elsewhere is determined by multiplicativity: χ(γj) = χ(γ)j . So we get four characters, whose values can be placed in a table. See Table 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revised version for publication in Israel J. Math. EXTERIOR ALGEBRAS AND TWO CONJECTURES ON FINITE ABELIAN GROUPS

Let G be a finite abelian group with |G| > 1. Let a1, . . . , ak be k distinct elements of G and let b1, . . . , bk be (not necessarily distinct) elements of G, where k is a positive integer smaller than the smallest prime divisor of |G|. We show that there is a permutation π on {1, . . . , k} such that a1bπ(1), . . . , akbπ(k) are distinct, provided that any other prime divisor of |G| (if ther...

متن کامل

Representation theory of finite abelian groups

Paul Garrett [email protected] http://www.math.umn.edu/ g̃arrett/ [This document is http://www.math.umn.edu/ ̃garrett/m/repns/notes 2014-15/01 finite abelian.pdf] 1. Simultaneous eigenvectors for finite abelian groups 2. Cancellation lemma, orthogonality of distinct characters 3. Representations of finite abelian groups 4. Fourier expansions on finite abelian groups 5. Appendix: spectral theor...

متن کامل

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS

A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012